반응형

네트워크 시뮬레이터로로 예전부터 1년반쯤 전까지는 QualNet을 써 오다가, 작년부터는 줄곧 ns-3만 쓰고 있는데, 둘 사이에 장단점을 간단히 비교해 볼 수 있을 것 같았다.


주의사항: 주관적인 관점이라서 다른 사용자 입장에서는 의견이 다를 수 있음.




<비용>

QualNet : ns-3 (압승)


*QualNet

 - 대학교에서 University license로 기본 라이브러리만 구매하면 약 1000만원

 - 기본 제공이 안되는 라이브러리 추가 시 약 100~250만원 정도 예상 (LTE, Zigbee 같은 것들이 여기에 해당 ㅜㅜ)

 - 한 번 라이선스 구입하면 무제한 사용

 - 대신 버전 업그레이드 기간에는 제한이 있음. 문제는 시간이 지날 수록 최신 버전을 써야 할 필요가 생긴다는 것. 2010년쯤에 구입했던 5.1 버전에는 기본 제공하는 와이파이 표준이 802.11a/b/g 밖에 없어서 802.11n이나 ac를 테스트할 수가 없었다. 구 버전 사용자가 최신 버전을 쓰려면 본사에 1000달러를 내면 된다고 한다.

 - 멀티코어를 잘 지원해서 시뮬레이션 성능을 높일 수는 있는데, 라이선스 하나에 코어 2개가 최대임. 코어 수 늘리려면 라이선스 더 사야 함(...)


*ns-3

 - 무료 (오픈소스)

 - 버전 업그레이드 되면 그냥 새로 다운받아서 쓰면 됨

 - 오픈소스라서 실시간으로 수정되는 코드를 버전 관리 시스템에서 바로 받아쓸 수도 있다. (물론 그만큼 버그에는 취약. 공식 릴리즈 공지되는 버전만 써도 무방)




<그래픽 유저 인터페이스(GUI)>


QualNet (압승) : ns-3


*QualNet

 - ns-3에 비해 월등히 좋음.

 - 마우스 클릭만 가지고 가장 기본적인 시뮬레이션 실행이 가능한 수준 ㄷㄷ.

 - 파워포인트에서 도형 배치하고 선 긋듯이 노드들 배치하고, 트래픽은 보내는 곳과 받는 곳 사이에 선을 drag & drop으로 죽 그어 주면 만들어짐. 그 선을 더블클릭해서 패킷 사이즈, 보내는 양, 시작시간 등등 다 설정하면 됨. 각 노드도 더블클릭해서 각각의 네트워크 인터페이스, 프로토콜, IP주소, 그외 각종 설정들 다 바꿀 수 있음.

 - 그림 그리기(?)를 끝내고 시뮬레이션 시작(play 버튼)을 누르면 노드와 노드 사이에 패킷 전달되는 과정, 노드의 움직임, 무선일 경우에는 전송 범위까지 실시간으로 시뮬레이션 시간에 맞춰서 다 표시됨. 보여주는 정보의 종류를 조정할 수 있고, 재생되는 속도도 조정 가능. (물론 최고속도는 컴퓨터의 하드웨어 성능에 비례함)

 - 시뮬레이션 끝나면 결과를 그래프로 볼 수 있는데, L1/L2/L3/L4/어플리케이션 계층 각각에 대해서 통계치를 다 볼 수 있음. 예를 들어 PHY 계층에서 signal 발생시킨 수와 에러율 확인, MAC 계층에서 프레임 전송 수와 실패 재전송 수, 라우팅 계층의 경로 탐색 시도 수, 응용 계층에서의 실제 throughput 이 모든 것을 모든 노드에 대해서 다 확인 가능.

 - 물론 GUI만으로 논문 실험에 쓸 만한 자기만의 방법을 설정해줄 수는 없고, 그 부분은 어쩔 수 없이 코드 수정을 해야 함.


*ns-3

 - GUI가 큰 의미가 없음 (...)

 - 애초에 ns-3에는 시뮬레이션 환경 자체를 설정하는 GUI가 존재하지 않음.

 - C++ 코드로 일단 뭐가 됐든 시뮬레이션을 돌려 본 뒤에야 자신이 만든 네트워크 토폴로지가 어떻게 생겼는지 GUI에서 확인 가능. 왜냐하면 ns-3에서 제공하는 NetAnim 이라는 GUI는 실시간으로 시뮬레이션을 시각화하는 것이 아니고, 시뮬레이션 결과 파일을 읽어들여서 재생하는 역할이기 때문. (스타크래프트의 지난 경기 리플레이로 보는 것과 차이가 없음)

 - 앞으로도 눈으로 보는 대로 시뮬레이션 환경을 만들 수 있도록 돕는 GUI가 나올 확률은 낮음. ㅜㅜ 왜냐하면 퀄넷은 시뮬레이션 환경 자체는 별도의 스크립트 파일로 처리하고, 실제 L1/L2/L3/L4 계층의 행동은 C/C++ 코드로 처리하기 때문에 GUI에서 스크립트 파일을 만들어 주는 것이 가능한 반면에, ns-3는 그냥 모두 다 C++로 코딩해야 되기 때문에.

 - 그나마 ns-3 입장에서 위안이 되는 점은, 토폴로지를 눈으로 확인할 필요가 없고 환경을 조금씩 바꾸면서 수많은 반복 실험을 해야할 때가 되면 GUI를 쓸 필요 없이 커맨드 라인에서 배치(batch)를 돌리게 되니까 퀄넷이나 ns-3나 별 차이가 없게 될 것이라는 점. (퍽이나 ㅠㅠ)




<시뮬레이션 성능(scalability, running time 측면)>


QualNet (우세) : ns-3


*QualNet

 - 애초에 퀄넷이 처음부터 내세우는 장점이 scalability이고, 기본적으로 모든 코드에 MPI 적용이 되도록 만들었기 때문에 (사용자가 새로 만드는 코드까지 전부) 멀티 프로세서 지원의 편의 측면에서 ns-3를 압도함.

 - QualNet 판매하는 회사 이름도 심지어 Scalable Networks임 (...)

 - GUI에서는 시뮬레이션 시작 버튼 옆에 프로세서 개수 칸이 있는데 그냥 숫자 써주면 끝.

 - 커맨드 라인에서는 "-mp 2"라고 쓰면 알아서 듀얼코어 써서 돌림.

 - 그냥 싱글코어로 돌려도 꽤 빠른 편임.

 - 다만 GUI에서 실시간으로 시뮬레이션 진행 중인 애니메이션 화면을 봐 가면서 실행하면 당연히 느림. (...) GUI에서 눈으로 확인이 되었으면 커맨드 라인에서 돌려야 함.

 - 유일한 단점이 있다면, 코어 개수도 현질을 해야 3개 이상 쓸 수 있다는 점.

 - 또한 라이선스 때문에 한번에 여러 머신에서 여러 프로세스를 돌리는 것이 불가능함. (라이선스 서버 1개가 라이선스 1개를 프로세스 1개에 할당하는 방식이고, 그 동안에는 다른 프로세스가 실행될 수 없는 구조 ㅠㅠ 동시에 여러 머신에서 시뮬레이션을 돌리려면 머신 개수만큼 라이선스가 있어야 함.)


*ns-3

 - ns-3도 퀄넷처럼 이벤트 기반 처리 방식으로 시뮬레이션을 실행하고, MPI 라이브러리를 통해서 멀티코어를 사용할 수 있기 때문에, 구조적인 측면에서는 퀄넷과 큰 차이가 없음. 하지만 사용의 편의가 떨어지는 게 문제.

 - ns-3에서 멀티코어를 쓰려면 사용자가 수동으로 mpi 관련 라이브러리를 미리 설치해야 하고, 자신의 시뮬레이션 코드에 MPI를 쓰겠다는 설정을 또 별도로 작성해 줘야 함. 단순히 argument에 숫자 추가만 하면 되는 QualNet에 비해 쓰기 어려울 수밖에 없음. (인터넷에도 MPI 적용이 안돼서 질문하는 글이 많음)

 - 모든 코드가 다 MPI가 되는 것도 아님. 특히 와이파이 같은 무선 쪽은 MPI가 아직 안돼서 무조건 싱글코어로 돌려야 함. 이게 특히 심각해지는 부분이 ns-3가 가상 머신들을 연동해서 돌아갈 때.


 - 다만 ns-3가 퀄넷에 비해 유리한 상황이 있기는 한데, 똑같은 시뮬레이션 인스턴스를 1개가 아니라 조건이 조금씩 다른 수백~수천 개의 시나리오를 순차적으로 처리해야 할 때. 퀄넷은 라이선스 1개당 1개 프로세스만 존재할 수 있지만, ns-3는 오픈소스니까 그런 거 없다. 원하는 만큼 클러스터에 복제해서 원하는 만큼 얼마든지 프로세스를 돌릴 수 있음. 즉, 개별 시뮬레이션 처리 시간이 오래 걸리는 문제를 동시에 여러 머신과 프로세스를 써서 얼마든지 전체 시뮬레이션 시간을 줄일 수 있음.




<외부 프로그램과의 확장성>


QualNet : ns-3 (우세)


*QualNet

 - 외부 프로그램에서 패킷을 만들어서 퀄넷의 시뮬레이션 네트워크에 주입하는 것이 가능한데, 방법이 편하지 않음. 외부 프로그램과 퀄넷 사이에 패킷을 서로 전달해 주는 코드를 하나 더 만들어야 함. (이것도 C언어로)


*ns-3

 - 리눅스 컨테이너(lxc)를 써서 VM을 만들어서 그 VM들 사이의 네트워크를 ns-3가 시뮬레이션할 수 있음!!

 - ns-3 시뮬레이션 코드 위에 아예 실제로 작동하는 프로그램 소스코드를 그대로 컴파일해서 돌리는 것(Direct Code Execution; DCE)도 가능!!


 - 그러나 위 2개 다 아직 한계가 있음 ㅠㅠ

 - VM 방식은 호스트 머신(리눅스)에 브릿지 인터페이스에 tap을 붙여서 ns-3와 연결되는데, 여기서 약간씩 딜레이가 발생함. VM들은 자기들만의 clock을 갖고 있는데 ns-3에 약간이나마 늦게 패킷이 흘러들어오면 그걸 ns-3 프로세스가 시뮬레이션으로 처리하고 다시 VM들에게 돌려주는 과정에서 각 VM은 이미 자기 시간이 흘러가고 있음. 결국 실제 환경에 비해서 delay가 커질 수밖에 없는 구조.

 - 게다가 설상가상으로, 와이파이 같은 무선 네트워크 환경에 저렇게 VM을 붙이면 ns-3가 아직(2017.04.15 기준) 무선 환경을 멀티코어로 처리하지 못하기 때문에 무선 환경의 신호 세기, 간섭, fading, propagation 이런 것들을 다 싱글코어에서 계산해야 됨(......)

 - 그래서 VM 10개를 만들고 와이파이 애드혹 네트워크를 시뮬레이션했더니, 각자 1초에 하나씩 hello 메세지를 broadcast하기만 하는데도 그 상태로 ping을 날리면 20초가 넘어가는(...) 도저히 실험 불가능한 상태가 됨. 지못미 ㅠㅠ

 - VM에 대한 대안으로 나온 것이 DCE인데, 이것도 사실 C++로 개발된 프로그램만 취급함. C++ 소스코드를 가져와서 ns-3에서 호환될 수 있게 g++ 옵션을 조금 추가해서 빌드하면 되는데, 그렇다고 모든 시중의 C++ 프로그램이 다 빌드되는 것도 아님. ns-3 커뮤니티 얘네들은 자랑스럽게 iperf를 소스코드 수정 없이 그대로 빌드해서 갖다쓸 수 있다고 자랑하는데, tcpdump 같이 더 심각한 일을 하는 소스코드는 아예 컴파일 불가능 ㅜㅜ

 - 내가 직접 소켓 프로그래밍으로 C++ 프로그램을 만들어서 돌리려고 해도 생각보다 지원 안되는 코드가 많아서 코딩에도 제약이 있음. 이게 뭐야...


 - 결론적으로, 분명히 확장성이 좋아 보이는데 결국 실제로 제대로 써 보려고 달려들면 퀄넷이나 ns-3나 안되는 건 마찬가지임 ㅠㅠ




<통계(Statistics)>


QualNet : ns-3 (무승부)


시뮬레이션 결과에 대한 통계를 내 주는 부분은 양쪽 다 방식도 다르고 장단점도 분명해서 어느 한 쪽이 유리하다고 볼 수는 없다.


*QualNet

 - 위의 GUI 부분에도 언급되어 있듯이, 물리 계층부터 응용 계층까지 각 계층에서 낼 수 있는 모든 통계를 항상 만들어 줌. GUI에서 그래프를 그려줄 때 참고하는 파일이 .stat 파일이고, 시뮬레이션 1개를 실행하고 나면 자동으로 생성되기 때문에 이 .stat 파일을 직접 파싱해서 원하는 통계치를 계산하는 것도 가능.

 - 모든 계층에 대한 통계가 다 나오는 점이 의외로 디버그에 유용할 때도 있음. 가령 응용 계층에서 패킷을 모두 전송 실패했는데 물리 계층에서 받는 signal이 분명히 기록되어 있다면 중간의 라우팅 계층 같은 부분에서 기대와 다르게 패킷을 drop했을 수 있으므로, 라우팅 계층의 logic을 살펴보는 식의 접근이 가능함.


*ns-3

 - 시뮬레이션 환경에서 생성하는 노드 각각에 대해서 .pcap 파일을 자동으로 만들도록 설정할 수 있는데 (코드에 pcap output을 만들어 달라고 1줄 추가하면 됨), 이 pcap 파일을 Wireshark에서 바로 보거나 그래프를 볼 수도 있고, tcpdump에서 약간의 규칙을 적용해서 원하는 정보를 원하는 포맷으로 만들어 쓸 수 있음.

 - pcap 파일을 기반으로 패킷을 분석하고 통계를 내는 부분은 오픈소스 도구들도 여럿 존재하기 때문에 퀄넷의 자체 포맷(stat)에 비해 유리한 점이 있음.




반응형
블로그 이미지

Bryan_

,
반응형

FireChat이라는 모바일 앱은 스마트폰들이 블루투스와 Wi-Fi P2P 기술을 이용해서 통신망 인프라스트럭쳐(3G, 4G/LTE, Wi-Fi 액세스 포인트 등) 없이도 서로 연결된 기기들끼리 메세지를 주고받을 수 있게 도와준다.


FireChat은 홍콩에서 한창 시위가 진행될 때 갑자기 유명해졌는데, 그 당시에 좁은 지역에 사람들이 집중적으로 모여들면서 셀룰러 망이 감당할 수 있는 수준을 넘어서면서 통신이 잘 되지 않자 시위대 구성원들 사이에 인프라 없이 서로 통신하기 위해 설치하기 시작하면서 단기간에 50만 다운로드를 기록했다.


Wired 기사 [1]에 의하면, FireChat의 개발사인 OpenGarden에서 필리핀 지역에 메쉬 네트워크를 실현하기 위해 노력하고 있다.


그런데 전통적인 무선 메쉬 네트워크(Wireless Mesh Network; WMN)의 개념에서는 어딘가에 고정적으로 설치되는 메쉬 라우터(mesh router)가 필요하다. 기존의 AP와 비슷하면서 AP들 사이에 무선 링크가 존재하는 것이 차이점이다.

그런데 태풍 때문에 재난상황이 자주 발생한다는 필리핀 도시 지역에 고정된 메쉬 라우터를 설치한다면, 셀룰러 망과 같은 인프라가 망가질 때 메쉬 라우터도 함께 망가질 가능성이 높을 텐데 어떻게 메쉬 네트워크를 구현하는 것일까?


알고 보니, 일부 사람들이 GreenStone이라고 부르는 중개기를 들고 다니면서 메쉬 네트워크를 유지하는 개념이라고 한다.


(GreenStone, image from TechInAsia [2])


GreenStone은 현재 필리핀의 Makati 지역에서 시범적으로 운영되고 있는 듯 하다.


ISM 대역의 블루투스 라디오를 쓰고 주변의 FireChat 앱에서 발생하는 메세지를 모아 뒀다가, 이동하면서 새롭게 연결된 FireChat 사용자들에게 저장된 메세지를 전달하는 역할을 갖는다.

이것은 어떤 의미에서 보면 "지연 허용 네트워크(Delay-tolerant Network; DTN)"에 더 가깝다. 메세지가 마치 물리적인 편지와 같이, 실시간으로 즉시 전달될 수는 없더라도 언젠가 당사자(destination node)를 만나게 되면 비로소 전달되게 하는 기술이다.


홍콩 시위대들이 FireChat을 사용할 때에는 밀집되어 있는 수많은 사용자들이 인프라 없이 메세지를 서로 전달하는 것(일종의 flooding)이 강조되었다면, GreenStone은 밀집되어 있지는 않지만 도시 전역에 퍼져 있는 FireChat 사용자들이 시간이 좀 걸리더라도 서로 메세지를 교환할 수 있도록 하는 데 초점을 맞추고 있다.

DTN 기술은 처음 소개된 이래로 지금까지 꾸준히 연구자들의 주목을 받아 왔지만, 항상 실제로 어디에 쓰이는지에 대해서 의문점이 따라다녔었다. 그런데 필리핀에서 메쉬 네트워크와 DTN이 결합된 듯한 형태로 실제 사용 예가 나타나는 것은 고무적인 일이다.


OpenGarden 사는 통신사의 입장에서는 눈엣가시 같은 존재감을 점점 나타내고 있지만, 사용자들의 입장에서는 안정적인 성능(QoS 같은 것)을 포기하는 대신 무료로 주변과 통신할 수 있는 기회를 제공하는 고마운 대상이 될 수 있다. (항상 그렇다는 것은 아니다. 특히 우리나라처럼 셀룰러 망이 지나치게 잘 되어 있는 곳에서는 굳이 이런 느리고 불안정한 메세징 앱을 쓰려고 하지 않을 테니까.)

하지만 적어도 스마트폰에 기본적으로 내장된 ISM 대역의 라디오 기술을 이용해서, 가끔 통신망 인프라 없이 직접 무선 라디오를 가지고 필요한 사람들과 통신이 가능하게 해 주는 것은 중/장기적으로 사용자에게 좋은 영향을 끼칠 수 있다.


분명히 내 눈앞에 있는 전자기기가 내 스마트폰과 마찬가지로 와이파이/블루투스를 내장하고 있는데, 그냥 서로 직접 얘기하게 만들어서 원하는 일을 할 수는 없을까? 이 질문에 대한 여러 해답 중의 하나가 OpenGarden의 사례가 될 것으로 기대한다.




<참고자료>

[1] https://www.wired.com/2015/10/giant-network-for-free-messaging/

[2] https://www.techinasia.com/firechat-messaging-app-disaster-tool




반응형
블로그 이미지

Bryan_

,
반응형

OS: Ubuntu 14.04 (amd64)

ns-3 version: 3.26



ns-3를 설치하는 과정에서 Visualizer (PyViz)도 활성화시키려면 python 관련 패키지들 몇개를 미리 설치해야 하는데, ns-3 공식 안내 페이지 [1]에 나온 대로 설치를 시도하면 python-gnomedesktop 패키지를 설치할 수 없다고 나온다.


$ sudo apt-get install python-dev python-pygraphviz python-kiwi python-pygoocanvas python-gnome2 python-gnomedesktop python-rsvg

Reading package lists... Done

Building dependency tree       

Reading state information... Done

E: Unable to locate package python-gnomedesktop



python-gnomedesktop 대신 python-gnome2-desktop-dev 를 설치하면 된다.


$ sudo apt-get install python-dev python-pygraphviz python-kiwi python-pygoocanvas python-gnome2 python-gnome2-desktop-dev python-rsvg



<참고자료>

[1] PyViz, https://www.nsnam.org/wiki/PyViz 

[2] http://stackoverflow.com/questions/36252495/unable-to-locate-package-python-gnomedesktop-installing-pyviz-in-ns3




반응형
블로그 이미지

Bryan_

,
반응형

Host OS: Ubuntu 16.04 (amd64)

Host Spec (VM): Quad core 2.6GHz (Intel Zeon, Haswell), 4GB RAM

LXC template: ubuntu



지난 여름에는 라즈베리파이 4개를 가지고 무선 메쉬 네트워크를 만들고, 각각의 라즈베리파이가 AP 역할을 함으로써 서로 다른 AP에 물린 클라이언트들 사이에 통신이 되도록 하였고, 이를 중개하는 multi-constrained 라우팅 프로토콜을 Java로 개발해서 테스트를 했었다.


사실 성능을 생각하면 C로 개발해야 하지만 무지막지하게 늘어나는 개발 시간 때문에 그나마 익숙하게 다룰 수 있는 Java로 개발을 했었고, 이제 와서 보니 이게 ns-3에서 시뮬레이션을 돌릴 때 결국 C나 파이썬으로 포팅해야 되는 어려움으로 돌아오고 말았다. ㄷㄷ


하지만 ns-3는 real-world program을 돌릴 수 있는 몇 가지 방법을 제시하고 있었고, 그 중에서 Linux Container (LXC)를 이용한 방법이 있어서 튜토리얼을 따라하며 환경을 구축해 보았다.


실제로 예제를 그대로 따라해서 2개의 노드가 IEEE 802.11g로 서로 애드혹 네트워크로 연결되고 각각의 노드에서 ping, ssh 등을 테스트하는 데에는 아무 문제가 없었다.

여기서 더 나가서 내가 개발한 Java 기반의 라우팅 프로토콜을 실행시키는 과정이 생각보다 오래 걸렸지만, 이것도 각 컨테이너를 인터넷에 먼저 연결시키고 apt-get으로 필요한 패키지를 다 설치하고 나니 어쨌든 내가 라즈베리파이에서 돌리던 모양 그대로 실행시킬 수 있었다.


여기까지는 일단 그대로 실행이 되는지부터 봐야 해서 노드 3개까지만 만들어서 해 본 거였고, 이제 본격적으로 시뮬레이션을 돌리기 위해서 노드 생성과 Java 프로그램 실행을 자동화하는 스크립팅 작업을 했는데 이것 또한 시간이 은근히 많이 걸렸다. ㅜㅜ


우여곡절 끝에 이제 내가 마음대로 원하는 만큼의 노드(컨테이너)를 자동으로 생성/실행할 수 있게 되었고, 네트워크 토폴로지는 ns-3에서 역시나 마음대로 설정해 주면 되었다.


드디어 대망의 첫 실험...

자신있게 10개의 노드를 명령어 한 줄로 간지나게(?) 자동으로 뙇 생성하고, 토폴로지는 4-4-2 그리드 형태로 만든 다음, 실험 시작을 누르고 나서 시범적으로 9번 노드에서 이웃 노드인 10번 노드한테 ping을 날려 봤더니...


root@node9:/# ping 10.0.0.10

PING 10.0.0.10 (10.0.0.10) 56(84) bytes of data.

64 bytes from 10.0.0.10: icmp_seq=1 ttl=64 time=3665 ms

64 bytes from 10.0.0.10: icmp_seq=2 ttl=64 time=4356 ms

64 bytes from 10.0.0.10: icmp_seq=3 ttl=64 time=5375 ms

64 bytes from 10.0.0.10: icmp_seq=4 ttl=64 time=7245 ms

64 bytes from 10.0.0.10: icmp_seq=5 ttl=64 time=8166 ms

64 bytes from 10.0.0.10: icmp_seq=6 ttl=64 time=9149 ms

64 bytes from 10.0.0.10: icmp_seq=7 ttl=64 time=10225 ms

64 bytes from 10.0.0.10: icmp_seq=8 ttl=64 time=11106 ms

64 bytes from 10.0.0.10: icmp_seq=9 ttl=64 time=12252 ms

64 bytes from 10.0.0.10: icmp_seq=10 ttl=64 time=13146 ms

64 bytes from 10.0.0.10: icmp_seq=11 ttl=64 time=14062 ms

64 bytes from 10.0.0.10: icmp_seq=12 ttl=64 time=15261 ms

64 bytes from 10.0.0.10: icmp_seq=13 ttl=64 time=16784 ms

64 bytes from 10.0.0.10: icmp_seq=14 ttl=64 time=18056 ms

64 bytes from 10.0.0.10: icmp_seq=15 ttl=64 time=19286 ms

64 bytes from 10.0.0.10: icmp_seq=16 ttl=64 time=20347 ms

64 bytes from 10.0.0.10: icmp_seq=17 ttl=64 time=21576 ms

64 bytes from 10.0.0.10: icmp_seq=18 ttl=64 time=22208 ms

64 bytes from 10.0.0.10: icmp_seq=19 ttl=64 time=22970 ms

64 bytes from 10.0.0.10: icmp_seq=20 ttl=64 time=23673 ms

64 bytes from 10.0.0.10: icmp_seq=21 ttl=64 time=24549 ms

64 bytes from 10.0.0.10: icmp_seq=22 ttl=64 time=24565 ms

64 bytes from 10.0.0.10: icmp_seq=23 ttl=64 time=24311 ms

64 bytes from 10.0.0.10: icmp_seq=24 ttl=64 time=24205 ms

64 bytes from 10.0.0.10: icmp_seq=25 ttl=64 time=23996 ms

64 bytes from 10.0.0.10: icmp_seq=26 ttl=64 time=23627 ms

64 bytes from 10.0.0.10: icmp_seq=27 ttl=64 time=23452 ms

64 bytes from 10.0.0.10: icmp_seq=28 ttl=64 time=23325 ms

64 bytes from 10.0.0.10: icmp_seq=29 ttl=64 time=23048 ms

64 bytes from 10.0.0.10: icmp_seq=30 ttl=64 time=22669 ms

64 bytes from 10.0.0.10: icmp_seq=31 ttl=64 time=22337 ms

64 bytes from 10.0.0.10: icmp_seq=32 ttl=64 time=21869 ms

64 bytes from 10.0.0.10: icmp_seq=33 ttl=64 time=21127 ms

64 bytes from 10.0.0.10: icmp_seq=34 ttl=64 time=20186 ms

64 bytes from 10.0.0.10: icmp_seq=35 ttl=64 time=19246 ms

64 bytes from 10.0.0.10: icmp_seq=36 ttl=64 time=18327 ms

64 bytes from 10.0.0.10: icmp_seq=37 ttl=64 time=17383 ms

64 bytes from 10.0.0.10: icmp_seq=38 ttl=64 time=16449 ms

64 bytes from 10.0.0.10: icmp_seq=39 ttl=64 time=15512 ms

64 bytes from 10.0.0.10: icmp_seq=40 ttl=64 time=14573 ms

64 bytes from 10.0.0.10: icmp_seq=41 ttl=64 time=13607 ms

64 bytes from 10.0.0.10: icmp_seq=42 ttl=64 time=12676 ms

64 bytes from 10.0.0.10: icmp_seq=43 ttl=64 time=11745 ms

64 bytes from 10.0.0.10: icmp_seq=44 ttl=64 time=10816 ms

64 bytes from 10.0.0.10: icmp_seq=45 ttl=64 time=9876 ms

64 bytes from 10.0.0.10: icmp_seq=46 ttl=64 time=8953 ms

64 bytes from 10.0.0.10: icmp_seq=47 ttl=64 time=8012 ms

64 bytes from 10.0.0.10: icmp_seq=48 ttl=64 time=7037 ms

64 bytes from 10.0.0.10: icmp_seq=49 ttl=64 time=6042 ms

64 bytes from 10.0.0.10: icmp_seq=50 ttl=64 time=5064 ms

64 bytes from 10.0.0.10: icmp_seq=51 ttl=64 time=4069 ms

64 bytes from 10.0.0.10: icmp_seq=52 ttl=64 time=3074 ms

64 bytes from 10.0.0.10: icmp_seq=53 ttl=64 time=2080 ms

64 bytes from 10.0.0.10: icmp_seq=54 ttl=64 time=1087 ms

64 bytes from 10.0.0.10: icmp_seq=55 ttl=64 time=102 ms

64 bytes from 10.0.0.10: icmp_seq=56 ttl=64 time=5.94 ms

64 bytes from 10.0.0.10: icmp_seq=57 ttl=64 time=5.57 ms

64 bytes from 10.0.0.10: icmp_seq=58 ttl=64 time=5.82 ms

64 bytes from 10.0.0.10: icmp_seq=59 ttl=64 time=5.49 ms

64 bytes from 10.0.0.10: icmp_seq=60 ttl=64 time=5.55 ms

^C

--- 10.0.0.10 ping statistics ---

60 packets transmitted, 60 received, 0% packet loss, time 59063ms

rtt min/avg/max/mdev = 5.498/13466.053/24565.805/8177.166 ms, pipe 25

root@node9:/# 



Aㅏ...

저기 중간에 점도 찍히지 않고 당당하게 5자리를 찍어주는 저 결과는 뭥미?

24205는 뭔가요? 저게 진정 와이파이 RTT인가여? 털썩...


각 컨테이너에서 아무 프로그램도 돌고 있지 않을 때는 이웃노드 간에 ping을 날리면 약 5ms가 되어야 정상인데, 보는 것처럼 데이터 패킷도 아닌 ICMP 패킷 하나가 바로 옆으로 가는 데 24초를 넘어섰다. ㄷㄷㄷ 저것도 계속 RTT가 커지기만 하길래 24초쯤 되는 상황에서 돌아가는 모든 Java 프로그램을 죽였더니, 한참이 지나고 나서야 ping이 정상으로 돌아온 것이다.


내가 Java 프로그램을 잘못 만들었구나 자책하려고 했지만, Host 머신에서 CPU 사용량을 확인해 보니 ns-3 프로세스가 혼자 97% ~ 110% 사이를 왔다갔다 하고 있었고, 정작 내가 개발한 Java 프로세스들은 별로 CPU를 차지하고 있지 않았다. (라즈베리파이2에서도 3-9% 수준이긴 했음)


일차적으로 생각해 본 원인은 ns-3 프로세스가 L2 이하를 시뮬레이션 시키고 있는데, 10개의 노드 각각이 라우팅을 위해서 Hello 패킷을 비롯한 컨트롤 패킷을 매 초마다 발생시키니까 싱글 코어만으로는 계산하는 양이 감당이 안돼서 응답이 늦어지는 바람에 ping이 20초를 넘어서는 저런 사단이 난 것 같았다.


아~망했어요 ㅠㅠ

나는 ns-3 코어가 적어도 100노드 정도의 scalability는 책임질 수 있을 거라 생각했는데... 이건 뭐 컨테이너가 제아무리 가벼워도 각자 발생시키는 패킷의 양이 늘어나면 ns-3 코어가 감당을 못하는 상황이라니...


현재까지는 ns-3에 멀티코어 활용하도록 고친다던지, 아예 컨테이너도 없이 real-world 프로그램을 직접 네트워크와 연동하는 방법(DCE라고 하는데... 결국 컨테이너로 해결을 못하면 이것도 공부해야 함...)은 아직 확인하지 못했다.


내가 ns-3에 멀티코어 활용 방법을 아직 몰라서 이런 것이라고 믿고 싶다. ㅜㅜ 

그런데 왠지 보니까 기본적으로 멀티코어를 활용하도록 설계했을 법도 한데 안한 점과 구글 검색(ns-3 multi core)에서 첫 페이지에서 그런 옵션을 켜는 법이라던지 하는 간단한 해결방법이 보이지 않는 것을 보면... 


야~신난다 @_@

대안으로 나온 것이 컨테이너도 없이 DCE라고 직접 프로그램 코드를 바로 실행하는 방법도 있지만 이건 C++만 된다고 한다. DCE에 Java 프로그램을 붙이는 방법이 있는지 찾아보고, 이마저도 없으면 쌩으로 Java를 모두 C++ 또는 파이썬으로 포팅하는 대규모 토건사업이 펼쳐지겠지 ㄹㅇㅁㄴㄹㅇㅁㄹㅁㅈ 일자리 창출 인정? =_=


정신줄 그만 놓고, 해결 방법을 찾아봐야겠다. ㅜㅜ


반응형
블로그 이미지

Bryan_

,
반응형

라우팅 프로토콜에 대한 논문은 오래 전부터 지금까지 다양한 분야에 대해서 무지 많이 쏟아져 나오고 있고, 그 중에서 유난히 읽기 쉬우면서 성능도 괜찮은 논문들도 있고, 반면에 복잡한 수학적 개념을 적용한 어려운 논문들도 있다.


내가 target으로 보고 있는 환경이 무선 네트워크(특히 와이파이) 쪽인데, 이 쪽으로도 90년대 후반부터 라우팅 관련 논문이 매일같이 쏟아져 나오고 있다.

처음에는 AODV나 DSR처럼 간단명료한 구조와 변화무쌍한 환경에 대한 적응이 가능한 모바일 애드혹 네트워크(MANET) 라우팅 프로토콜 논문들과 그 파생 논문들을 보면서 놀랐던 기억이 있다. 왜냐하면 딱 들어맞지는 않더라도 "Simple is the best"를 잘 보여주는 프로토콜이었기 때문이다.

이어서 여러 개의 무선 네트워크 인터페이스를 쓰는 multi-radio routing protocol에서도 이렇게 간단하면서 준수한 성능을 보여 주는 기존의 single-radio routing 분야에 있는 DSR이나 AODV를 기반으로 해서 확장한 논문들이 인기가 많았던 것도 볼 수 있었다. (인용이 엄청났으니까)


이 때까지만 해도 나는 라우팅 프로토콜에 굳이 수학이 들어가지 않아도 간단한 프로토콜 구조만 잘 만들면 되는 줄로 크게 착각했었음을 이제서야 알게 되었다. 사실은 그렇게 간단한 최단경로 라우팅 프로토콜에서 각 노드가 맡는 역할이 그저 프로그래밍 차원에서 역할과 메세지 교환 로직만 구현해서 되는 것이 아니고, 그래프 이론에서 먼저 개념을 정립한 뒤에 프로그래밍 요구사항으로 도출된 것으로 봐야 한다.


시간이 지나면서 단순히 최단 경로(shortest path)를 찾는 것으로 응용 프로그램의 요구를 만족시킬 수 없는 경우를 해결하기 위해서 hop count가 아닌 다른 링크 품질(link quality metric)을 적용하는 사례가 생겨났다. 예를 들어, 그래프 형태로 보면 모든 링크는 단순히 임의의 두 노드 사이에 연결된 하나의 엣지(edge)이지만, 자세히 보면 패킷 전송 속도나 대역폭, 패킷이 유실될 확률과 같은 세부 특성이 다른 것이다.


앞서 언급한 잘 만들어진 간단한 구조의 유명한 라우팅 프로토콜들은 모두 hop count 기반이었고, 이것을 그외의 다른 링크 품질로 대체하기 시작하면서, 거의 대부분의 논문이 더 복잡한 수학이 되는 것을 볼 수 있었다. 결국 복잡한 수학적 표현은 불가피한 것인데, 나는 나도 모르게 속으로 "Simple is the best"를 엉뚱하게 적용하며 라우팅 프로토콜에서 쓰이는 복잡한 (사실 공부해 보면 인공지능 같은 요즘의 트렌드에 비하면 복잡한 것도 아니다) 수학을 기피해 왔었던 것 같다.


그리고 내가 해결하고자 하는 상황은 더이상 single-radio network도 아니고, hop count만 쓸 수도 없고, 응용 프로그램도 다양하기 때문에 라우팅 프로토콜을 프로그래밍 관점에서만 바라보고 간단하게 해 보려는 생각을 버려야 하겠다.

비록 응용 계층에서 작동하면서 커널 계층의 도구들을 활용하는 식으로 구현하기는 했지만, 실제로 라우팅 프로토콜을 바닥부터 설계하고 구현해 보니 수학적인 기반을 갖지 않고서는 실제로 라우팅 프로토콜이 경로 하나를 발견하는 데 필요한 여러 가지 의사결정 과정을 구현하는 가이드라인이 없어진다는 것도 알 수 있었다.


많이 늦어지긴 했고 비록 수학을 좋아하지는 않지만, 이제 와서 수학을 기피하면 학교를 그만두는 것이나 마찬가지이기에, 그리고 문제 상황을 수학적으로 모델링하는 연습을 지금 해 두지 않으면 나중에도 내가 내 문제를 주도적으로 해결할 수 없을 것이기 때문에 힘들지만 열심히 복잡한 수학적 개념을 "잘" 적용한 좋은 학회/저널 논문들을 다시 공부해야겠다.


반응형
블로그 이미지

Bryan_

,